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Supporting Information

SI-1 Toggle B2

Kobayashi et al [1] consider a number of genetic toggle switches, interfaced with a QS signaling
pathway. Specifically, their E. coli strain “B2” (Fig. SI-1.1) detects as well as produces (through
the synthetase encoded by the expressed gene luxI, which converts common precursor metabolites)
acyl-homoserine lactone (AHL) signaling molecules. AHL is a QS signaling pathway from Vibrio
fischeri. Functionally, toggle B2 enables an E. coli population to measure population density
through AHL, because AHL signaling can be reversibly transported to the medium via diffusion,
contributing to the AHL density in the culture [1]. To achieve an in-depth understanding
of dynamic properties of coupled QS and toggle constructs, Kuznetsov et al. [2] developed
and studied a mechanistic mathematical model of a population (or, equivalently, an ensemble)
comprising N toggles, see Fig. 1 (bottom panel), corresponding to Toggle B2. Their study
revealed important multiple functions, namely bistability as well as stable oscillations, that an
ensemble of Toggles B2 was capable of exhibiting. Analytical conditions for bistability were
found, and a time separation was introduced to obtain a stable limit cycle for a population of
interacting cells.

In bistable circuits (toggles), transitions such as those caused by fluctuations due to low copy
numbers of species per cell, or due to local environmental “noise” can force individual cells
to change expression state at random [1]. This noise effect can spontaneously lead to the
emergence of heterogeneous (mixed) populations consisting of cells in different expression states,
which appear as bimodal population distributions when the corresponding protein levels are
measured [1]. To investigate the effect of a spontaneous toggle switching in single and coupled
cellular systems, leading to bimodal population distributions, Wang et al. [3] developed models
for a single cell and a multi-cellular toggle system comprising N cells, respectively. In their
models, the dynamics of the repressor proteins LacI and λ CI is described by the two ODE
equations developed in [4]. The AI-interfacing employed in the population model [3] corresponds
to a signaling pathway which is slightly different from the signaling pathway in Toggle B2
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Figure SI-1.1. Toggle B2: Density-Dependent Gene Activation. Notations and abbreviations.
Plasmids: pTSMb2, pCIRb and pAHLa; genes: gfp, cI857, lacI, luxR, and luxI ; promoters: Ptrc, PL∗ ,
and Plux; AHL, acyl-homoserine lactone. Figure adapted from Fig. 6(A) in [1].

(Fig. SI-1.1) as suggested in [1] and described earlier. The main difference is in the description
of the expression of the gene that encodes LuxI, see [3] for more details.

SI-2 Model Derivation

Here, we describe the main assumptions and steps used to derive mass-balance equations for the
S- and A-models formulated in the main text.

SI-2.1 SI-2.1 Mass-Balance Equations

The derivation of the S- and A-models includes the development of two modules:

I. A transcription-translation module describing biosyntheis of repressor proteins.

II. A metabolic module describing biosynthesis of autoinducers.

A general and systematic discussion of both modules can be found in [5, 6]. The derivation
of the first module for the A-model, relevant to our work, is given in [2]. Because one of our
modeling objectives is to ultimately describe how the analysis of the mathematical models can
be mechanistically interpreted in terms of tuning synthetic toggle “dials” by implementable
experimental interventions as reviewed in [7], including modifications of ribosome-binding sites
(RBS), carboxy-terminal tags, etc., [4, 8, 9], we will derive mass-balance equations at the level of
molecular detail sufficient to suggest plausible modeling predictions.
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A transcription-translation module can be described by a basic two-stage model [2, 5, 6],

dnx
dt

= nAkx − rxnx, (SI-2.1a)

dnX
dt

= kXnx − rXnX. (SI-2.1b)

Here, nx is the number of mRNA transcripts per cell for gene x, and nX is the number of protein
molecules per cell; nA is the number of active promoters from which the mRNA of gene x is
transcribed at an average rate kx; kX is the averaged translation rate; rx and rX are the effective
first-order rate constants associated with degradation of the mRNA and proteins, respectively.

Since mRNA molecules are usually degraded rapidly compared to other cellular processes, a
quasi-steady state for the equation (SI-2.1a) can often be assumed [2], yielding

nx =
nAkx
rx

. (SI-2.2)

Using (SI-2.2) in the right-hand side of the equation (SI-2.1b), we obtain

dnX
dt

= kX
kx nA
rx

− rX nX. (SI-2.3)

The ratio bx = kX/rx in equation (SI-2.3) is called a burst parameter of the protein X [2]. Using
bx in (SI-2.3) yields

dnX
dt

= bxkxnA − rXnX. (SI-2.4)

Assuming log-phase growth of E. coli, the volume V (t) of the growing bacterium can be
approximated by the expression V (t) = V0 exp(λt), and equation (SI-2.4) can be rewritten in a
concentration form,

d[X]

dt
= bxkx[PA] − (rX + µ) [X]. (SI-2.5)

Here, [X](t) = nX(t)/V (t) and [PA](t) = nA(t)/V (t).

The concentration of activate promoters, [PA], can be computed, using an appropriate Hill
function [6]. For example, we use

[PYA] =
[PY]

1 + ([Y]/KY)nY
(SI-2.6)

for the repressor protein Y binding to the promoter PY with the dissociation constant KnY
Y . In

(SI-2.6), [PY] is the total concentration of all promoters PY, while [PYA] is the concentration
of active promoters not bound with the repressor protein Y. Recall that the cooperativity
described by the Hill exponent nY can arise from [4–6]:

(i). Multimerization of represssor proteins;

(ii). Cooperative binding of repressor multimers to multiple operator sites in the promoter.

Analogously, we use a Hill-function

[PGA] = [PG]
([G]/KG)nG

1 + ([G]/KG)nG
(SI-2.7)
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for the autoinducer G binding to the promoter PG with the dissociation constant KnG
G and the

Hill exponent nG. The concentration of all active promoters PA can now be obtained from
(SI-2.6) and (SI-2.7) as

PA = PYA + PGA. (SI-2.8)

Using expression (SI-2.8), the equation (SI-2.5) can finally be updated as

d[X]

dt
=

bxkx[PY]

1 + ([Y]/KY)nY
+ bxkx[PG]

([G]/KG)nG

1 + ([G]/KG)nG
− (rX + µ) [X]. (SI-2.9)

Here, all parameters are described below in Table SI-3.2.

Similar mass balanced equations can be derived for the repressor protein Y, and synthases U
and W. For example, the mass balance equation for the synthase U is

d[U]

dt
=

buku[PY]

1 + ([Y]/KY)nY
− (rU + µ) [U]. (SI-2.10)

Analogously, we can write down a mass balance equation for the autoinducer concentration [G],
that is, [C14-HSL], governed by the synthase U (CinI),

d[G]

dt
= kG [U] + DG (Ge −G) − (rG + µ) [G]. (SI-2.11)

Here, kG is the maximum production rate of C14-HSL by CinI (Table SI-3.4), DG is the export
rate of C14-HSL (Table SI-3.4), and [Ge] is the extracellular concentration of C14-HSL.

Assuming that the concentration of the enzyme U reaches its quasi-steady state rapidly [10],
one can obtain from (SI-2.10) that

[U] =
buku
rU + µ

× [PY]

1 + ([Y]/KY)nY
. (SI-2.12)

Using (SI-2.12) in the equation (SI-2.11) yields

d[G]

dt
=

bu ku kG
rU + µ

× [PY]

1 + ([Y]/KY)nY
− (rG + µ) [G]. (SI-2.13)

Here, the definitions and the values of all parameters are given in Table SI-3.4. A similar mass
balanced equation can be derived for the second autoinducer R (C4-HSL), and we omit the
details.

SI-2.2 SI-2.2 Nondimensionalization

To nondimensionalize mass balance equations, as for example, the mass balance equations
(SI-2.9) and (SI-2.13), we use the following dimensionless state variables, which are similar to
those introduced in [2],

t′ = (rd + µ) t, x =
[X]

KX
, y =

[Y]

KY
, g =

[G]

KG
, ge =

[Ge]

KG
, r =

[R]

KR
, re =

[Re]

KR
.

(SI-2.14)
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Here, we assume that all protein degradation rates can be set experimentally so that the following
equalities can be obtained approximately [8],

rX = rX = rU = rW = rd =
ln 2

τ1/2
, τ1/2 = 4 min. (SI-2.15)

The procedure of setting all protein degradation rates or, equivalently, all protein half-lives
approximately equal to a prescribed value close to mRNA half-lives [8] is required to balance
the toggle [4]. We discuss the balancing procedure and relevant experimental interventions in
Sect. SI-2.2.

Using the dimensionless variables (SI-2.14), all original modeling mass balances can be nondi-
mensionalized, yielding the S- and A-models formulated in the main text, where the prime is
dropped from dimensionless time t′. In this case, dimensional and dimensionless parameters are
related to one another as:

1. For the dimensionless rates, we obtain:

a1 =
bx kx [PY]

KX (rd + µ)
, a2 =

by ky [PX]

KY (rd + µ)
, a3 =

bx kx [PG]

KX (rd + µ)
, (SI-2.16a)

a4 =
by ky [PR]

KY (rd + µ)
, a5 =

bu ku kG [PY]

KG (rd + µ)2
, a6 =

bw kw kR[PX]

KR (rd + µ)2
. (SI-2.16b)

2. For dimensionless diffusion and degradation parameters, we obtain:

dg =
DG

rd + µ
, dr =

DR

rd + µ
, δg =

rG + µ

rd + µ
, δr =

rR + µ

rd + µ
, δe =

µe
rd + µ

,

(SI-2.17a)

Molecular and biophysical parameter values used in the expressions (5) - (6) will be estimated
in Sect. SI-2.2, while dimensionless parameters will be estimated in Sect. SI-2.2 In this section,
we only mention that due to [8], we can set

KX = KY = 40 monomers per cell. (SI-2.18)

We could not find any estimation of values for the two parameters KG for C14-HSL and KR for
C4-HSL in the literature despite the fact that more and more precise measurements of kinetic
parameters become available [11]. We estimate the order of magnitude of KG and KR as follows.

In the detailed experimental results on the C4-HSL-mediated quorum sensing regulatory system
of the opportunistic Gram-negative bacterium Aeromonas hydrophila, the concentration of
C4-HSL was found to be of order of magnitude equal to 10µM [12]. In E.coli biology, it is
convenient to use nM units [13], because relative to the effective E. coli volume [14], the value
of 1 nM corresponds to one molecule per cell. This fact is widely used in the literature [8].
Therefore, the above estimate of 10µM corresponds to 104 C4-HSL signaling molecules per cell.

Another ad-hoc rule of E.coli biology used in a number of studies with the Cornell E.coli computer
model [15–18], resulting in a number of relevant predictions such as ribosomal-protein limitations,
lac-control, plasmid stability, and etc. [14, 19–24], is that, the coarse-grained estimation for the
dissociation equilibrium constant to be used in the Hill function can be calculated as 25% of the
intracellular modifier (reference) concentration. In our case, this yields a coarse-grade estimate
of 0.25× 104 C4-HSL signaling molecules per cell,

KG = KR = 2.5× 103 molecules per cell. (SI-2.19)

The values for other parameters will be estimated below.
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SI-2.3 Toggle Balancing (Symmetrization)

As it was observed experimentally [4,8], synthetic circuits can operate and deliver the engineered
traits only if special molecular constrains are fulfilled,

(i) repressor protein half-lives are close to mRNA halflifes [8];

(ii) repressor protein half-lives are approximately equal [4, 8].

Constrain (ii) is required for “balancing” the given circuit [4]. Moreover, both works suggest
experimental interventions to fulfill the above constraints [4, 8]. Such and similar interventions
are termed a “tuning dials” in the review [7].

It is mathematically convenient for us to generalize the above balancing procedure by the
procedure of “symmetrization” of two antagonistic, mutually repressing toggle subsystems
by selecting synthetic (tuned) parameter values that would make two antagonist subsystems
symmetric to one another. In other words, we assume that an ideal S toggle has mirror symmetry
corresponding to permutations between the two antagonistic subsystems. Symmetry usually
helps with analytical analysis of nonlinear mathematical models.

Specifically, we “symmetrize” (balance) biosynthesis kinetic rates, using constraints

a1 = a2, a3 = a4 and a5 = a6. (SI-2.20)

Appropriate molecular interventions, which can be used to set the relationships (SI-2.20) ap-
proximately under certain experimental conditions, are reviewed in [7]. Similarly, we symmertize
“diffusion” parameters,

dg = dr = d, (SI-2.21)

and the autoinducer “degradation” or “utilization” (“load”) parameters,

δg = δr = δe = δ. (SI-2.22)
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SI-3 Estimation of Parameter Values

SI-3.1 Toggle Parameters

In our estimations, we use general biochemical calculations [25, 26]. First, we collect generic
prokaryotic and specific E.coli parameter values in Table SI-3.1.

Table SI-3.1. Generic prokaryotic and E. coli specific values of model parameters

Name Description Value Unit Reference

rmRNA Rate of transcription by RNA polymerase in prokaryotes 80 bp/sec [27]
τmRNA Typical half-life time for 80% of genes in E. coli 3 - 8 min [28]
raa Rate of translation by the ribosome in prokaryotes 20 aa/sec [27]a

kP Rate of translation by the ribosome in prokaryotes 1.71 sec−1 estimated in (SI-3.3)
T E. coli replication period under specific nutrition conditions 25 min [14]
µ Intracellular specific dilution rate due to E. coli cell growth ln 2/T min−1 [14]
µe Extracellular dilution rate due to flow 0.1 min−1 [29]
ρ Total volume fraction of cells in chamber 0.8 − [30]
N Number of E. coli cells in an overnight population culture 109 (OD600 = 1) cells/ml [14]

aThis estimate is smaller than the estimate 33 aa/sec used in [11].

A general rate of translation of protein P in prokaryotes (kP). Suppose that an mRNA
transcript of protein P contains naa amino acids. Then, for one ribosome to transcribe P from
its mRNA transcript, assuming a translation rate of 20 amino acids per second (Table SI-3.1), it
will take time

tP =
naa
20

. (SI-3.1)

The above estimates yields the rate per ribosome which is

1 molecule

tP
=

20

naa
sec−1. (SI-3.2)

Given that the coding region of protein P is naa × 3 nucleotides long, and that a ribosome can
attach every 35 nucleotides, we can estimate that naa × 3/35 ribosomes can be attached per
mRNA molecule. We, thus, obtain

kP =
20

naa
× naa × 3

35
= 1.71 protein molecules sec−1. (SI-3.3)

To illustrate our parameter estimation procedure, we derive parameter values for the Lac-repressor
subsystem only. Parameter values for all other subsystems can be derived similarly.

kx : Fully induced strength of promoters PY (Ptet) and PG. One lacI mRNA transcript
is 1204 bases long (Table SI-3.2). To transcribe one molecule of lacI mRNA from one gene with
a rate of 80 bases per second (Table SI-3.2) takes

1204 bases

80 bases/sec
= 15.05 sec. (SI-3.4)
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Table SI-3.2. Parameter values of the LacI-repressor subsystem.

Name Description Value Unit Reference

Transcription:
LlacI Size of lacI gene 1204 bp [31]
Γx Repressed strength of promoter Ptet 5.0× 10−4 molecules/cell/sec [8]
kx Fully induced transcription ratea 6.65× 10−2 species/cell/sec estimated in (SI-3.5)
KY The number of TetR to repressb Ptet 40 monomers/cell estimated in (SI-2.18)
KG The number of C14-HSL to activatec Pcin 2.5× 103 molecules/cell estimated in (SI-2.19)
τ1/2,lacI Half-life of lacI mRNA 3.8 min [32]
rx Rate of lacI mRNA degradation 3.04× 10−3 sec−1 estimated in (SI-3.7)
nY The number of subunits in TetR 2 [33]
nG Hill coefficient of C14-HSL 3 a reference valued

Translation:
LLacI Size of one subunit in tetrameric LacI 360 aa/subunit [34]
kX Rate of LacI translation 1.71 molecules/cell/sec estimated in (SI-3.3)
τ1/2,LacI Half-life of LacI protein 4 min [8]
rX Rate of LacI degradation 1.16× 10−3 sec−1 estimated in (SI-3.7)

aFully induced strength of promoters Ptet and Pcin,
bFor the sake of brevity, “to repress” means “to half-maximally repress.”
cFor the sake of brevity, “to activate” means “to half-maximally activate.”
d The Hill coefficients for C6-HSL and C12-HSL are estimated in the range of values 1 - 2 in [35,36], while
these are estimated to be equal to 4 for C4-HSL and C14-HSL in [37]. We use a compromising reference value
equal to 3 and also explore other values in our computational studies.

Then, per gene the estimate (SI-3.4) yields

kx =
1

15.05 sec
= 6.65× 10−2 lacI mRNA (molecules/cell/sec). (SI-3.5)

The estimate (SI-3.4) is one order of magnitude less than the estimate 0.5 lacI mRNA (molecules/cell/sec)
provided in [8].

rx : Rate of lacI mRNA degradation. The calculation of degradation rates for proteins is
based on the known protein half-lives,

rx =
ln 2

t1/2
. (SI-3.6)

We obtain (Table SI-3.2),

rx =
ln 2

3.8× 60 sec
= 3.04× 10−3 sec−1. (SI-3.7)

rX : Rate of LacI (X) degradation. We obtain (Table SI-3.2),

rd = rX =
ln 2

4× 60 sec
= 2.89× 10−3 sec−1. (SI-3.8)

We use the estimate (SI-3.8) for all proteins in the model.
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Table SI-3.3. Parameter values of the TetA-repressor subsystem.

Name Description Value Unit Reference

Transcription:
LtetR Size of tetR gene 905 bp [38]
Γy Repressed strength of promoter Plac 5× 10−4 molecules/cell/sec estimated in Table SI-3.2
ky Fully induced transcription ratea 8.87× 10−2 molecules/cell/sec estimated
KX The number of LacI to repressb Plac 40 monomers/cell estimated in Table SI-3.2d

KR The number of C4-HSL to activatec Prhl 5× 104 monomers/cell estimated in Table SI-3.2
τ1/2,tetR Half-life of tetR mRNA 0.5 min [39]
ry Rate of tetR mRNA degradation 2.31× 10−2 sec−1 estimated
nX The number of subunits in LacI 2 [33]
nR Hill coefficient of C4-HSL 4 estimated in Table SI-3.2
Translation:
LTetR Size of one subunit in tetrameric TetR 207 aa/subunit [38]
kY Rate of TetR translation 1.71 molecules/cell/sec estimated in (SI-3.3)
τ1/2,TetR Half-life of TetR protein 4 min estimated Table SI-3.2
rY Rate of TetR degradation 1.16× 10−3 sec−1 estimated

aFully induced strength of promoters Plac and Ptet,
bFor the sake of brevity, “to repress” means “to half-maximally repress.”
cFor the sake of brevity, “to activate” means “to half-maximally activate.”
d Equilibrium dissociation constant for LacI is 7.7× 10−8 M [40].

Table SI-3.4. Parameter values of the 3-OH-C14-HSL/CinI-signaling subsystem.

Name Description Value Unit Reference

Transcription:
LcinI Size of cinI genea 663 bp estimated
Γu Repressed strength of promoter Plac 5× 10−4 molecules/cell/sec estimated in Table SI-3.2
ku Fully induced strength of promoter Ptet 13.27× 10−2 molecules/cell/sec estimated
τ1/2,cinI Half-life of cinI mRNA 6.6 min arbitraryb

ru Rate of cinI mRNA degradation 1.75× 10−3 sec−1 estimated
Translation:
LCinI Size of CinI aa-sequence 221 aa http://string-db.org
kU Rate of CinI translation 1.71 molecules/cell/sec estimated in Table SI-3.2
τ1/2,CinI Half-lifea of CinI protein 4 min [8]
rU Rate of protein CinI degradation 1.16× 10−3 sec−1 estimated in Table SI-3.2
Signaling:
kG Maximal production rate of CinI 2 min−1 [41]
rG Degradation rate of C14-HSL 0.002 hr−1 [42]c

DG Export rate of C14-HSL 2.1 min−1 [43]

aThe coding region of the gene has been estimated from its protein sequence size provided in the same table
as 221× 3 = 663.
bThis estimate corresponds to a general (or typical) pattern for mRNA half-lives in E. coli [44]. Note that [8]
use a generic half-life parameter value of 2 min.
cData for 3-OH-C12-HSL is used.
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Table SI-3.5. Parameter values of the C4-HSL/RhlI-signaling subsystem.

Name Description Value Unit Reference

Transcription:
LrhlI Length of rhlI gene 603 bp [45]
Γw Repressed strength of promoter Plac 5× 10−4 molecules/cell/sec estimated in Table SI-3.2
kw Fully induced strength of promoter Plac 13.27× 10−2 molecules/cell/sec estimated
τ1/2,rhII Half-life of rhlI mRNA 6.6 min [46]a

rw Rate of lacI mRNA degradation 1.75× 10−3 sec−1 estimated
Translation:
LLacI Length of RhlI protein aa-sequence 196 aa [47]
kW Rate of RhlI translation 1.71 molecules/cell/sec estimated in Table SI-3.2
τ1/2,RhlI Half-life of RhlI protein 4 min estimated in Table SI-3.2
rX Rate of LacI degradation 1.16× 10−3 sec−1 estimated
Signaling:
kR Maximal production rate of C4-HSL by RhlI 16 min−1 [41]
rR Degradation rate of C4-HSL 0.02 hr−1 [42]
DR Export rate of C4-HSL 3.0 min−1 [43]

aThe half-life data for lasI mRNA is used because the degradation of rhlI is positively regulated by LasI [46]
and, so, could have a longer half-life. This estimate is in line with a general (or typical) pattern for mRNA
half-lives in E. coli [44]. Note that [8] use a genetic half-life parameter value of 2 min (Table SI-3.4).

SI-3.2 Dimensionless parameter values

Using data from Table SI-3.1 and the estimate (SI-3.8), we obtain

µ =
ln 2

25× 60
= 0.46× 10−3 sec−1, rd + µ = 3.35× 10−3 sec−1. (SI-3.9)

To estimate rates ai, i = 1 . . . 6, defined in (5), we assume that the equalities bx = by = bu = bw =
10 can be approximately set by using RBS-related interventions [7]. Also, to avoid competition
for ribosomes, only a few plasmids bearing promoters PX, PY, PG, and PR can be used. By
selecting [PX] = [PY] = [PG] = [PR] = 1 copies per cell, we obtain

a1 = a3 =
10×

(
6.65× 10−2

)
× 1

40× (3.35× 10−3)
= 4.96 ≈ 5, (SI-3.10a)

a2 = a4 =
10×

(
8.87× 10−2

)
× 2

40× (3.35× 10−3)
= 6.61 ≈ 7, (SI-3.10b)

a5 = a6 =
10×

(
13.27× 10−2

)
× (2/60)× 2

(2.5× 103)× (3.35× 10−3)2
= 3.15 ≈ 3. (SI-3.10c)

Next, from (6), we obtain

dg =
2.1/60

3.35× 10−3
= 10.44, (SI-3.11a)

dr =
3/60

3.35× 10−3
= 14.40, (SI-3.11b)

δg = δr ≈
µ

rd + µ
=

0.46× 10−3

3.35× 10−3
= 0.14, (SI-3.11c)

δe =
0.1/60

3.35× 10−3
= 0.50. (SI-3.11d)
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We find the estimated values of the parameters to be of the same order of magnitude as the
corresponding parameter values estimated and used in [2–4,8, 35–37]. Not enough is yet known
about molecular interactions inside host cells to obtain highly precise descriptions [7]; it is
common to computationally evaluate the effect of different values for rate parameters and even
for Hill exponents [2–4,8]. Following [2, 4, 8], where genetic circuits built from similar elements
have been studied, we have explored sets of parameter values which are close to the estimates
given in (SI-3.10) and (SI-3.11), which ensure bistability in both S- and A-models, see the main
text.
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SI-4 Alternative Definitions of Monotone Systems and Order
Preservation

We defined monotonicity using graph partitions because this is the easiest way to present the
concept. However, the usual definition found in textbooks is not phrased in that form. We
explain here how our definition is equivalent to the usual one as well as to another property. For
further remarks on these equivalences, see [48]. A signed graph (such as the species influence
graph obtained by looking at signs of Jacobain entries) G is said to be balanced (see Harary [49])
if every undirected closed loop in the graph G has a net positive sign, that is to say, an even
number, possibly zero, of negative arrows. Equivalently, any two (undirected) paths between
two nodes must have the same net sign. By undirected loops or paths, we mean that one is
allowed to transverse an edge either forward or backward. A spin assignment Σ for the graph G
is an assignment, to each node vi, of a number σi equal to “+1” or “−1” (a “spin,” to borrow
from statistical mechanics terminology). If there is an edge from node vj to node vi, with label
Jij ∈ {±1}, we say that this edge is consistent with the spin assignment Σ provided that:

Jijσiσj = 1

which is the same as saying that Jij = σiσj , or that σi = Jijσj . An equivalent formalism is that
in which edges are labeled by “0” or “1,” instead of 1 and −1 respectively, and edge labels Jij
belong to the set {0, 1}, in which case consistency is the property that Jij ⊕ σi ⊕ σj = 0 (sum
modulo two). One says that Σ is a consistent spin assignment for the graph G (or simply that
G is consistent) if every edge of G is consistent with Σ. In other words, for any pair of vertices
vi and vj , if there is a positive edge from node vj to node vi, then vj and vi must have the same
spin, and if there is a negative edge connecting vj to vi, then vj and vi must have opposite spins.
(If there is no edge from vj to vi, this requirement imposes no restriction on their spins.) It
is easy to see that if there is a consistent spin assignment for G, then the graph is balanced.
Conversely, if G is balanced then there is a consistent spin assignment for G: to see this, simply
label one node arbitrarily, and follow paths to label other nodes consistently. (If the graph is
not connected, repeat the procedure in each connected component.)

For any spin assignment Σ, let A1 be the subset of nodes labeled +1, and let A−1 be the subset
of nodes labeled −1. The set of all nodes is partitioned into A1 and A−1. Conversely, any
partition of the set of nodes into two subsets can be thought of as a spin assignment. With this
interpretation, a consistent spin assignment is the same as a partition of the node set into two
subsets A1 and A−1 in such a manner that all edges between elements of A1 are positive, all
edges between elements of A−1 are positive, and all edges between a node in A1 and a node in
A−1 are negative. In summary, our definition of monotonicity, given in terms of partitions of
state variables, amounts to the same as the requirement that there exist at least one consistent
spin assignment for its associated graph G, or equivalently, that its graph G is balanced.

Supposing that a system is monotone, with a consistent spin assignment Σ = {σi, i = 1, . . . , n},
we introduce following the relation among vectors x ∈ Rn≥0:

x � y

means that
σixi ≤ σiyi i = 1, . . . , n .
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This is a componentwise inequality that requires xi ≤ yi if node i has been assigned a positive
spin, and xi ≥ yi if instead node i has been assigned a negative spin. Let y(t) and z(t) be
any two solutions of the system dx/dt = f(x), and suppose that σiyi(0) ≤ σizi(0) for each
i = 1, . . . , n. Then, Kamke’s Theorem states that σiyi(t) ≤ σizi(t) for all t ≥ 0 and coordinate
i = 1, . . . , n. This is the usual definition of monotonicity: if states start at time zero in a certain
order, then they must remain forever in the same order. Conversely, a flow that preserves an
order of this type must be monotone in the sense that we have defined the concept. See the
textbook [50] for a proof, and [51] for extensions with systems with external inputs.

The order preservation property has a variety of important implications for our model. For
parameters viewed as constant states, it allows us to conclude the monotonicity of stable
branches in bifurcation diagrams, as illustrated by the results described in Monotone Parametric
Dependencies in the S design. A different implication concerns the domain of attraction of
equilibria. Suppose that we consider an initial state x(0) that is coordinate-wise less, in the
monotone order, than a given equilibrium E (in a possibly multistable system). Comparing to
E the solution x(t) starting from this initial state x(0), we know that x(t) must remain less
than E for all times. Thus, an equilibrium to which x(t) converges must be upper bounded by
E. In particular, if the equilibrium E is minimal (with respect to the coordinate-wise order), it
follows that this trajectory converges to E. Similar conclusions apply to maximal equilibria E
and initial states x(0) that are coordinate-wise larger than E. One obtains in this manner a
rich amount of information about the basin of attraction of equilibria in monotone systems.
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SI-5 Symmetry

In this section, we formalize the symmetry of

• a single S toggle embedded into an environment (N = 1),

• a population of N -identical S toggles interacting via a common environment (N ≥ 2).

SI-5.1 Symmetry of the S Model

As is routine in physics and engineering, symmetry-based simplifications often lead to important
insights into complex phenomena [52], and we also use symmetry to discuss bifurcations in S
toggle populations. We observe that under a special condition imposed on the parameter values,

a1 = a2, a3 = a4, a5 = a6, dg = dr, δg = δr, (SI-5.1)

a single S toggle embedded into an external environment is described by the S model (1) with
N = 1 which has a Z2-symmetry group generated by involution I [52–54],

I : (x, y, g, r, ge, re) −→ (y, x, r, g, re, ge). (SI-5.2)

Consider the fixed-point subspace Fix (Z2) ∈ R6 of the group Z2, see [52],

Fix (Z2) = {z = (x, y, g, r, ge, re) ∈ R6 | Iz ≡ z}. (SI-5.3)

We ignore the trivial equilibria that belong to Fix (Z2), that is, equilibria of the S model (1)
for which the following equalities hold, x = y, g = r, and ge = re, corresponding to identically
the same levels of LacI and TetR, and C14-HSL and C4-HSL, respectively. Let us denote the
equilibrium of the S model (1) by z0, and let us assume that z0 /∈ Fix (Z2). Now, because
the S model is invariant with respect to the involution (SI-5.2), and because z0 /∈ Fix (Z2), we
obtain that both z0 and I z0, I z0 6= z0, are different equilibria of the S model (1), see [52,53].
The equilibria z0 and I z0 are called relative equilibria [55]. All bifurcations for the relative
equilibria occur simultaneously at the same values of free parameters. We generalize G- and
R-homogeneous populations states as relative equilibria, which means that as soon as the S
toggle has a G-state, it will also have the corresponding R-state, implying bistability.

The general case of N ≥ 2 is slightly more complicated as a population of identical S toggles
has a symmetry group obtained after combinations of permutations among all cells in the given
population and the toggle involution (SI-5.2), which we denote G = Z2 × SN for brevity. Here,
SN is a symmetric group of order N ≥ 1, and Z2 is the toggle involution (SI-5.2) applied to all
toggles simultaneously. For example, for N = 2, we will have one permutation,

P : (x1, y1, g1, r1, x2, y2, g2, r2, ge, re) −→ (x2, y2, g2, r2, x1, y1, g1, r1, ge, re), (SI-5.4)

and the involution,

I : (x1, y1, g1, r1, x2, y2, g2, r2, ge, re) −→ (y1, x1, r1, g1, y2, x2, r2, g2, re, ge). (SI-5.5)
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SI-5.2 Symmetry Breaking

The symmetry-breaking (pitchfork) bifurcation discussed around Fig. 7 in the main text has
co-dimension one for all typical systems with Z2-symmetry [52,53]. To understand the symmetry-
breaking occurring at the BP-point shown in Fig. 7, we need first to define the symmetry of the
original symmetric (1:1)-mixed state. We observe that the original symmetric (1:1)-mixed state
is invariant with respect to transformation g,

g = P ◦ I = I ◦ P, g ◦ g = id (SI-5.6)

where id is the identity. Here, P and I are as defined in (SI-5.4) and (SI-5.5), respectively. The
transformation (SI-5.6) forms subgroup Σ(1:1) of the group Z2 × S2, see SI-5.1 Symmetry of the
S Model, which consists of two elements, that is, Σ(1:1) = {id, g}. The subgroup Σ(1:1) is called
the isotropy subgroup [52] of the original (1:1)-mixed state. We further observe that the two
(1:1)-states bifurcating from the original Σ(1:1)-symmetric (1:1)-state at the BP-point (Fig. 7)
are not invariant with respect to the isotropy subgroup Σ(1:1). Indeed, they are mapped one to
one another by the transformation (SI-5.6). This observation motivates using the “symmetry-
breaking” terminology [52] with respect to the loss of the isotropy subgroup symmetry by the
(1:1)-mixed state at the BP-point. Due to the isotropy subgroup Σ(1:1) of the original (1:1)-mixed
state, involution g defined in (SI-5.6) maps panel (A) to panel (D), and panel (B) to panel (C)
within Fig. 7 of the main text. That is, g : LP1 → LP2, g : LP2 → LP1, and g : BP → BP,
see the coordinates of the three critical points, BP, LP1, and LP2, at the end of the caption of
Fig. 7.

SI-5.3 A Remark on Bifurcations in Symmetric vs. Non-Symmetric Models

Mathematical models are idealizations of complex phenomena, based on certain assumptions,
and there is a long established tradition to use symmetries in mathematical physics to clarify
and explain complex phenomena. We use symmetry as another mathematical simplification
alternative to simplifications arising from biological assumptions.

For our modeling studies with the S model, it may be difficult and even impossible to construct
identical promoters which would correspond to identical values of parameters, that is, for
example, a3 6= a4. Therefore, it is required to discuss an appropriate interpretation of bifurcation
diagrams computed for the S model.

First of all, we note that all LP-points will typically persist under small non-symmetric pertur-
bations. However, all BP-points corresponding to pitchfork bifurcations will typically disappear
under non-symmetric perturbations. They will typically be replaced by LP-bifurcation points.
In such cases, in the small vicinity of the original BP point after a non-symmetric perturbation,
we will typically have three branches of solutions, one branch of solutions which do not change
their stability, and other two branches of solutions, stable and unstable, which will emanate
from or collide with one another at the LP bifurcation point. Outside of the small vicinity of the
perturbed BP-point, the bifurcation diagrams for both symmetric and non-symmetric models
will be typically qualitatively the same. Such situations are mathematically very well studied
and are described in the corresponding literature [52,53].
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SI-6 Exponential Stability of Cellular Populations

A systematic analysis of dynamical mathematical models begins with finding equilibrium
solutions followed by the analysis of their exponential stability [56]. The next step is often to
carry out (local) bifurcation analysis of the equilibrium solutions, allowing for the exploration of
“stability boundaries” in the parameter space [53]. Both stability and bifurcation analyses rely
on the computation of the eigenvalues from the corresponding model linearizations [53].

A nontrivial specificity of the computation of eigenvalues for the stability and bifurcation analyses
of the A- and S-population models is that both models with N > 1 are invariant with respect to
the action or the given linear representation of the symmetric group SN of permutations among
N -cells [52]. It is known that irreducible representations of groups enforce multiple eigenvalues
of matrices that commute with their linear representations, a well-known fact following from
Schur’s Lemma in the representation theory of Lie groups [52].

To take into account the necessity to deal with multiple eigenvalues in the situations when
the value of N is a priori unknown, we have developed a general approach to the analysis of
exponential stability [56] in arbitrary populations of identical cells, independently of N , as
described below.

A conceptually similar reduction approach (without any discussion of the multiplicity problem)
on the exponential orbital stability of periodic solutions in systems of identical and slightly
different oscillators coupled via a medium was developed by E. E. Shnol [57]. In his work, an
averaging technique over the entire cellular population was used in both cases of homogeneous and
mixed populations. Later, G. Katriel [58] has rediscovered the reduction result for homogeneous
populations only, using Floquet Theory [59]. We note that the Schur’s formula [60] can also be
used to compute multipliers of periodic solutions in systems of coupled oscillators, using the
linearizations of the corresponding Poincaré maps, in the very similar way as it is done for the
case of equilibrium solutions in this work.

SI-6.1 A General Population Model of Identical Cells

In this SI, we use Schur’s formula [60] to compute explicitly the characteristic polynomials for
the corresponding model linearizations. The most important implication of Schur’s formula is
that it can be easily seen that the values of the eigenvalues are independent of N ≥ 2.

To describe the general exponential stability analysis, we first introduce an appropriate notation
as follows. Let S and z be “generalized” global (extracellular) and local (intracellular) state
variables, respectively, dimS = m ≥ 1 and dim z = k ≥ 2. Using the generalized variables, both
the S-model (1) and the A-model (2) can then be rewritten in the following general form, which
we call a G-model,

dS

dt
= H0(S) +

ρ

N

N∑
i=1

H(S, zi), 0 ≤ ρ ≤ 1, (SI-6.1a)

dzi
dt

= h(S, zi), i = 1, . . . N. (SI-6.1b)

The G-model (SI-6.1) includes m+Nk equations.
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SI-6.2 A Homogeneous Population

In the case of a homogeneous population of identical cells, we have zi(t) ≡ z(t). As a result, the
G-model (SI-6.1) reduces to a system of (m+ k)-differential equations,

dS

dt
= H0(S) + ρH(S, z), 0 ≤ ρ ≤ 1, (SI-6.2a)

dz

dt
= h(S, z). (SI-6.2b)

Observe that the model (SI-6.2) describes a single cell placed in a “free”, non-constant medium.

Definition 1. Let (S0, z0) be an equilibrium solution of the model (SI-6.2). Then, (S0, z0)
corresponds to a homogeneous population equilibrium solution,

(S0, z0, . . . , z0) = (S0, N×z0) , (SI-6.3)

of the full G-model (SI-6.1) for any N ≥ 2. Notation N×z0 means that z0 is repeated N -times
in (S0, z0, . . . , z0).

Although the model (SI-6.2) is sufficient to study the existence of homogeneous population
equilibrium solutions (SI-6.3), it is not enough to establish the exponential stability of the
corresponding solutions (SI-6.3). Let (S0, Nz0) be a homogeneous population equilibrium
solution of the G-model (SI-6.1) with any fixed N ≥ 2. To analyze the exponential stability
of (S0, N×z0) in the “full” G-model (SI-6.1), we need to compute the eigenvalues of the
corresponding Jacobian matrix JN ,

JN =


A ρ

NB ρ
NB . . . ρ

NB
C D O . . . O
C O D . . . O
...

...
...

. . .
...

C O O . . . D

 . (SI-6.4)

In (SI-6.4), each of three matrices, B, C, and D, is repeated N -times; A and D are square
matrices of sizes m and k, respectively; B and C are rectangular matrices of sizes m× k and
k ×m, respectively,

A =
∂H0

∂S
+ ρ

∂H

∂S
, B =

∂H

∂z
, C =

∂h

∂S
, D =

∂h

∂z
. (SI-6.5)

All partial derivatives in the expressions (SI-6.5) are evaluated at (S0, z0) which depends on all
G-model parameters with the one important exception that they are independent of N because
(S0, z0) is obtained using (SI-6.2). Notation O corresponds to zero submatrices of appropriate
sizes.

We call a square matrix stable if all its eigenvalues have strictly negative real parts. The following
theorem holds for JN .

Theorem 1. (I). Statements (a), (b), and (c) are equivalent.

(a). The matrix JN is stable for all N ≥ 2.
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(b). The matrix J1 and its submatrix D are both stable.

(c). The matrix J2 is stable.

(II). The matrix JN has typically k different eigenvalues, each of multiplicity N − 1 in the
following sense. Let {λ1, . . . , λm+k} be the set of eigenvalues of matrix J1, and let {µ1, . . . , µk}
be the set of eigenvalues of its submatrix D, Then,

{λ1, . . . , λm+k, (N − 1)(µ1, . . . , µk)} (SI-6.6)

is the set of all eigenvalues of matrix JN for any N ≥ 2, where {µ1, . . . , µk} is repeated
(N − 1)-times.

Proof. Let λ be a complex number, λ ∈ C. Consider a new matrix Mλ = JN − λIm+Nk, where
Im+Nk is the identity matrix of size m+ nk. To find eigenvalues of JN , we need to write down
the corresponding characteristic equation P (λ) = 0, P (λ) = detMλ. Let us represent matrix
Mλ in the form

Mλ =

(
Aλ B
C Dλ

)
. (SI-6.7)

Here, matrices Aλ = A−λIm, B = 1
N (B, . . . ,B), C = (C, . . . ,C)T, and Dλ = diag (Dλ, . . . ,Dλ)

with Dλ = D− λIk. Next, assume for a moment that D−1λ exists. Then, Schur’s formula can be
used to compute detMλ [60],

detMλ = detDλ · det
(
Aλ − BD−1λ C

)
. (SI-6.8)

Next, we compute

BD−1λ C = B
(
D−1λ C

)
=

1

N
(B, . . . ,B)


D−1λ C

D−1λ C
. . .

D−1λ C

 = BDλ
−1C. (SI-6.9)

For the determinant of the block diagonal Dλ, we obtain detDλ = (detDλ)N . Substituting
(SI-6.9) into (SI-6.8) yields

detMλ = (detD)n · det
(
Aλ −BD−1λ C

)
. (SI-6.10)

Using the Schur’s formula for the product detD·det
(
Aλ −BD−1λ C

)
in the “backward” direction,

we can rewrite (SI-6.10) in the following equivalent form

detMλ = (detDλ)N−1 · det

(
Aλ B
C Dλ

)
. (SI-6.11)

The expression (SI-6.11) can now be rewritten simply as

P (λ) = (detD− λIk)N−1 · det (J1 − λIm+k) . (SI-6.12)

Recall that the expression (SI-6.12) has been proven under a restrictive condition detDλ 6= 0,
see above, which means that λ is not an eigenvalue of the matrix D. This restriction can be
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removed, for example, as follows. Let λ0 be an eigenvalue of the matrix D. Then, we obtain for
the polynomial P (λ) by continuity

P (λ0) = lim
λ→λ0

P (λ) = lim
λ→λ0

(detD− λIk)N−1 · det (J1 − λIm+k) = 0. (SI-6.13)

It follows from (SI-6.13) that (SI-6.12) holds for all λ ∈ C.

Finally, we observe from (SI-6.12) that to compute all eigenvalues of the Jacobian matrix JN for
any N ≥ 2, it is sufficient to compute the eigenvalues of either two smaller matrices, D and J1,
or one matrix J2 . The latter may be practically slightly easier than computing the eigenvalues
for D and J1 separately. The proof of the theorem follows.

Consider a differential equation
dz

dt
= h(S0, z), (SI-6.14)

where S0 is a fixed parameter corresponding to the equilibrium (S0, N × z0) of the full G-model
(SI-6.1). In contrast to equation (SI-6.2), equation (SI-6.14) describes a single cell placed into
a constant environment, which can be interpreted as an environment shaped by the large
population of cells and which does not “sense” any changes in a single cell. Additionally,
consider a cascade model

dS

dt
= H0(S) + ρH(S, z1), 0 ≤ ρ ≤ 1, (SI-6.15a)

dzj
dt

= h(S, zj), j = 1, 2. (SI-6.15b)

Observe that the variable z2 is absent from the first equation (SI-6.15a) and, hence, (SI-6.15)
cannot be obtained from (SI-6.1) by simply setting N = 2.

Then, using the definition of exponential stability [56], the first statement of Theorem 1 can be
reformulated as the following corollary which admits an intuitive interpretation of the fact why
the case of N = 2 is sufficient to study the exponential stability of homogeneous population
solutions.

Corollary 1. Let (S0, N × z0) be an equilibrium solution of the G-model (SI-6.1). Then,
statements (a) - (d) are equivalent.

(a). (S0, N × z0) is exponentially stable in the G-model (SI-6.1) for any N ≥ 2.

(b). (S0, z0) is exponentially stable in the reduced model (SI-6.2), and z0 is exponentially stable
in the single-cell model (SI-6.14).

(c). (S0, z0, z0) is exponentially stable in the G-model (SI-6.1) at N = 2.

(d). (S0, z0, z0) is exponentially stable in the cascade model (SI-6.15).

A comparison of Statements (a) and (b) of Corollary 1 leads to a conclusion that the given
population consisting of identical cells is stable with respect to any small perturbation if and
only if (i) the population is stable with respect to any small uniform perturbation of the entire
population described by system (SI-6.1) and, simultaneously, (ii) a majority of unperturbed cells
forces a single slightly perturbed cell to re-join back the unperturbed majority.
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Indeed, system (SI-6.14) used in Statement (b) means that the entire population does not sense
small perturbations in a single cell because S0 is fixed in (SI-6.14).

Note that both conditions in Statement (b) can be reformulated, using the cascade model
(SI-6.15) from statement (d). Finally, because the stability property is independent of the
number N of identical cells in the population, the simple case of N = 2 can be used as given by
statement (c).

SI-6.3 A Mixed Population Split into Two Subpopulations

Suppose now that the given population consisting of N , N ≥ 4, identical cells is split into two
different subpopulations of sizes N1 ≥ 2 and N2 ≥ 2, respectively, where N = N1 + N2. We
always assume that each subpopulation consists of at least two cells. Then, the two different
homogeneous subpopulations can be described by two state variables z1 and z2, respectively,
where z1 6= z2, that is, zip(t) ≡ z1(t) for some subset of indexes ip, p = 1, . . . , N1, and
ziq(t) ≡ z2(t), for another subset of indexes iq, q = 1, . . . , N2. It follows that the equation
(SI-6.1a) from the G-model (SI-6.1) simplifies as follows

dS

dt
= H0(S) +

ρ

N

N∑
i=1

H(S, zi) = ρ
(
β1H(S, z1) + β2H(S, z2)

)
. (SI-6.16)

In (SI-6.16), βj is the fraction of the j-th subpopulation, βj = Nj/N , j = 1, 2, β1 + β2 = 1. In
this case, the entire G-model (SI-6.1) reduces to the following three equations

Ṡ = H0(S) + ρ
(
β1H(S, z1) + β2H(S, z2)

)
, βj ∈ Q, β1 + β2 = 1, (SI-6.17a)

żj = h(S, zj), j = 1, 2. (SI-6.17b)

Definition 2. Let (S0, z10, z20), z10 6= z20, be a non-uniform equilibrium solution of the reduced
system (SI-6.17). Then, (S0, z10, z20), z10 6= z20 corresponds to a mixed population equilibrium
solution,

(S0, z10, . . . , z10, z20, . . . , z20) = (S0, N1z10, N2z20) , (SI-6.18)

of the full G-model (SI-6.1). The solution (SI-6.18) describes a mixed population of N identical
cells, split into two (non-identical) subpopulations of sizes N1 > 0 and N2 > 0, respectively, N1 +
N2 = N . Notation Njzj0 means that zj0 is repeated Nj-times in (S0, z10, . . . , z10, z20, . . . , z20),
j = 1, 2.

Due to the condition β1+β2 = 1 used in (SI-6.17a), there formally exists a continuum of different
fractions β1 : β2, β1 ∈ R and β2 ∈ R. Of course, in the biological sense, only rational values
β1 ∈ Q and β2 ∈ Q are allowable, leading to infinitely many fractional (β1 : β2)-configurations
in the subdivision of the original population into two different subpopulations. Simple examples
of such situations can be easily presented (Fig. SI-6.1).

For the sake simplicity of the exponential stability analysis, we will always assume that both β1
and β2 are real numbers, that is, βj ∈ R, j = 1, 2.

Let (S0, N1z10, N2z20) be a mixed population equilibrium solution of the G-model (SI-6.1) with
any fixed N ≥ 4, see (SI-6.3). To analyze the exponential stability of (S0, N1z10, N2z20), we
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Figure SI-6.1. Examples of (p : q)-populations. The left panel corresponds to the case of a
(10:0)-homogeneous population; the middle panel corresponds to the case of a (5:5)- or, equivalently,
(1:1)-mixed population, and the right panel corresponds to a (9:1)-mixed population.

need to compute the eigenvalues of the corresponding Jacobian matrix JN obtained from the
G-model (SI-6.1),

JN =



A ρ
NB1 . . . ρ

NB1
ρ
NB2 . . . ρ

NB2

C1 D1 . . . D1 O . . . O
... . . .

. . . . . .
...

. . .
...

C1 O . . . D1 O . . . O
C2 O . . . O D2 . . . O
...

...
...

...
...

. . .
...

C2 O . . . O O D2


. (SI-6.19)

In the matrix (SI-6.19), submatrices Bi, Ci, and Di, are repeated Nj-times; A and Di are
square matrices of sizes m, and k, respectively; Bi and Ci are rectangular matrices of sizes
m× k and k ×m, respectively, and

A =
∂H0

∂S
+

2∑
j=1

ρj
∂H(S0, zj0)

∂S
, (SI-6.20a)

Bj =
∂H(S0, zj0)

∂z
, Cj =

∂h(S0, zj0)

∂S
, Dj =

∂h(S0, zj0)

∂z
, j = 1, 2. (SI-6.20b)

Consider the Jacobian matrix Q2 of size m + 2k for the system (SI-6.17), computed at
(S0, z10, z20),

Q2 =

 A ρ1B1 ρ2B2

C1 D1 O
C2 O D2

 (SI-6.21)

Theorem 2. (I). Statements (a) and (b) are equivalent.

(a). The matrix JN is stable for all N ≥ 4, and with any N1 ≥ 2 and N2 ≥ 2 such that
N1 +N2 = N .

(b). Matrix Q2, and its two submatrices, D1 and D2, are stable.

(II). Matrix JN has typically 2k different multiple eigenvalues in the following sense. Let
{λ1, . . . , λm+2k} be the set of eigenvalues of Q2, let {µ1, . . . , µk} be the set of eigenvalues of D1,
and let {σ1, . . . , σk} be the set of eigenvalues of D2. Then,

{λ1, . . . , λm+k, (N1 − 1) (µ1, . . . , µk) , (N2 − 1) (σ1, . . . , σk)} , (SI-6.22)
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is the set of all eigenvalues of the matrix JN for any N ≥ 4. In (SI-6.22), the set {µ1, . . . , µk} is
repeated (N1 − 1)-times, and the set {σ1, . . . , σk} is repeated (N2 − 1)-times. To have a nonzero
value of multiplicity Nj − 1 in (SI-6.22), condition Nj ≥ 2 and, hence, N ≥ 4, are natural
requirements, j = 1, 2. In other words, the latter two conditions guarantee that both matrices D1

and D2 exist. Otherwise, Theorem 2 does not make any sense.

Proof. The proof Theorem 2 can be carried out, using a simple modification of the proof of
Theorem 1. For this reason, we only provide a brief sketch of the proof for Theorem 2. Similarly
to the proof of Theorem 1, we need to write down a characteristic equation P (λ) = 0 Here
P (λ) = detMλ, and matrix Mλ can be defined as in (SI-6.7), using appropriate submatrices,

Aλ = A− λIm, (SI-6.23a)

B =
1

N
(B1, . . . ,B1,B2, . . . ,B2) , (SI-6.23b)

C = (C1, . . . ,C1,C2, . . . ,C2)
T , (SI-6.23c)

Dλ = diag (Dλ1, . . . ,D1λ,D2λ, . . . ,D2λ) , Diλ = Di − λIk. (SI-6.23d)

In the above submatrix definitions, the matrices with index j are repeated Nj-times, i, j = 1, 2.

In this case, detMλ can also be computed using Schur’s formula, see (SI-6.8). However, (SI-6.9)
should be replaced by

BD−1λ C = ρ1B1D
−1
1λC1 + ρ2B2D

−1
2λC2. (SI-6.24)

For the block diagonal matrix Dλ, we obtain detDλ = (detD1λ)N1 · (detD2λ)N2 . Now, similarly
to (SI-6.10), we will have

detMλ = (detD1)
N1 · (detD2)

N2 · det
(
Aλ − ρ1B1D

−1
1λC1 − ρ2B2D

−1
2λC2

)
. (SI-6.25)

Using the Schur’s formula in the “backward” direction, we will then have

P (λ) = (detD1 − λIk)N1−1 · (detD2 − λIk)N2−1 · detQ2. (SI-6.26)

The rest can be proved as in the proof for Theorem 1. The proof of Theorem 2 follows.

Consider the following cascade model

dS

dt
= H0(S) + ρ

(
β1H(S, z1) + β2H(S, z3)

)
, β1 + β2 = 1, (SI-6.27a)

dzj
dt

= h(S, zj), j = 1, . . . , 4. (SI-6.27b)

Variables z2 and z4 are absent from the first equation (SI-6.27a) and, hence, the cascade
system (SI-6.27) cannot be obtained from the G-model (SI-6.1) by simply setting N = 4. Now,
Theorem 2 can be reformulated in terms its Corollary 2 as follows.

Corollary 2. Let (S0, N1 × z10, N2 × z20) be a mixed population equilibrium solution of the
G-model (SI-6.1). Then, Statements (a) - (c) are equivalent.

(a). (S0, N1 × z10, N2 × z20) is exponentially stable in the G-model (SI-6.1) for any N ≥ 4,
and with any N1 ≥ 2 and N2 ≥ 2 such that N1 +N2 = N .

(b). (S0, z10, z20) is exponentially stable in the reduced model (SI-6.17), and each zj0 is expo-
nentially stable in the single-cell model (SI-6.14), j = 1, 2.

(c). (S0, z10, z10, z20, z20) is exponentially stable in the cascade model (SI-6.27).
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SI-6.4 A Mixed Population Split into Several Subpopulations

The case of a mixed population split into two subpopulations with densities ρ1 = β1ρ and
ρ2 = β2ρ can be generalized to the case of a mixed population split into L-different subpopulations
with densities ρ1, . . . , ρL, where ρ1 + . . .+ ρL = ρ, L ≥ 3 as follows.

Let subpopulation j consist of Nj cells, and let subpopulation j correspond to variable zj , that
is, we have zj′(t) ≡ zj(t), where j′ ∈ {i1, i2, . . . , iNj} ⊂ {1, 2, . . . N}, j = 1, . . . , L. In this case,
the G-model (SI-6.1) reduces to the following equations

Ṡ = H0(S) +
L∑
j=1

ρjH(S, zj),
L∑
j=1

ρj = ρ, (SI-6.28a)

żj = h(S, zj), ρj = βjρ, βj =
Nj

N
, j = 1, . . . , L. (SI-6.28b)

Definition 3. Let (S0, z10, . . . , zL0) be a non-uniform equilibrium solution of the system (SI-6.28),
where zj0 6= zj′0 for all j 6= j′. Then, (S0, z10, . . . , zL0), corresponds to a mixed population equi-
librium solution,

(S0, N1z10, . . . , NLzL0) , (SI-6.29)

of the full G-model (SI-6.1). The solution (SI-6.29) describes a mixed population of N identical
cells, which is split into L subpopulations of the corresponding sizes Nj ≥ 2, N1 + . . .+NL = N .
Notation Njzj0 means that zj0 is repeated Nj-times in the vector-form solution of the the full
G-model (SI-6.1), Nj ≥ 2, j = 1, . . . , L.

Consider the Jacobian matrix QL for the reduced system (SI-6.28), computed at (S0, z10, . . . , zL0),

QL =


A ρ1B1 . . . ρLBL

C1 D1 . . . O
...

...
. . .

...
CL O . . . DL

 . (SI-6.30)

In (SI-6.30), all submatrices are defined as in (SI-6.20), where j = 1, 2 should be replaced by
j = 1, . . . , L. Below, we formulate Theorem 3 and Corollary 3 without any proof because they
are similar to Theorem 2 and Corollary 1, respectively.

Theorem 3. (I). Statements (a) and (b) are equivalent.

(a). The Jacobian JN computed for the G-model at the given equilibrium (SI-6.29) is stable for
all N ≥ 2L, and with any Nj ≥ 2, j = 1, . . . , L, such that N1 + . . . NL = N .

(b). Matrix QL and its submatrices Dj, j = 1, . . . , L, are stable.

(II). Matrix JN has typically kL different multiple eigenvalues in the following sense. Let

{λ1, . . . , λm+kL} be the set of eigenvalues of QL, and let {µ(j)1 , . . . , µ
(j)
k } be the set of eigenvalues

of Dj, j = 1, . . . , L. Then,{
λ1, . . . , λm+k, (N1 − 1)

(
µ
(1)
1 , . . . , µ

(1)
k

)
, . . . , (NL − 1)

(
µ
(NL)
1 , . . . , µ

(NL)
k

)}
(SI-6.31)

is the set of all eigenvalues of the matrix JN for any N ≥ 2L. In (SI-6.31), each set

{µ(j)1 , . . . , µ
(j)
k } is repeated (Nj − 1)-times with all Nj ≥ 2, j = 1, . . . ,K.
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Consider the following cascade model

dS

dt
= H0(S) +

L∑
j=1

ρjH(S, z2j−1),

L∑
j=1

ρj = ρ, (SI-6.32a)

dzj
dt

= h(S, zj), j = 1, . . . , 2L. (SI-6.32b)

State variables z2j with even indeces are absent from the first equation (SI-6.32a) of the cascade
model (SI-6.32).

Corollary 3. Let (S0, N1z10, . . . , NLzL0) be a mixed equilibrium solution of the G-model (SI-6.1),
where Nj0 6= Nj′0 for all j 6= j′. Then, Statements (a) - (c) are equivalent.

(a). (S0, N1z10, . . . , NLzL0) is exponentially stable in the G-model (SI-6.1) for any N ≥ 2L,
and with any Nj ≥ 2, j = 1, . . . , L, such that N1 + . . . NL = N .

(b). (S0, z10, . . . , zL0) is exponentially stable in the reduced model (SI-6.28), and each zj0 is
exponentially stable in the single-cell model (SI-6.14), j = 1, . . . , L.

(c). (S0, z10, z10, z20, z20, . . . , zL0, zL0) is exponentially stable in the cascade model (SI-6.32).
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SI-7 Additional Figures

Figure SI-7.1

In accordance with predictions from Fig. 3, we observe that an increase in the values of δg lead
to suppressed levels in x1 (LacI) as well as to elevated levels in y1 (TetR). This is illustrated in
Fig. SI-7.1. The almost constant dependencies in Fig. SI-7.1 (C) and (D) can be explained by
suppressed levels of TetR and C4-HSL in the G-population.

Figure SI-7.1. Examples of monotone parametric dependencies for the repressor-protein
levels in the G-homogeneous state. Red solid curves correspond to a weak coupling among all
toggles (d = 0.1), while black solid curves correspond to a strong coupling among all toggles (d = 10).

Analogously (Fig. SI-7.1), an increase in the values of δg should also lead to suppressed levels in
g1 (C14-HSL) as well as to elevated levels in r1 (C4-HSL), while an increase in the values of
δr should lead to elevated levels in g1 (C14-HSL) and, simultaneously, to decreased levels in r1
(C4-HSL). This is illustrated in Fig. SI-7.2. Constant dependencies in Fig. SI-7.2 (C) can be
explained by suppressed levels of TetR and C4-HSL in the G-population.
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Figure SI-7.2

Figure SI-7.2. Examples of monotone parametric dependencies for the signaling species
levels in the G-homogeneous state. Red solid curves correspond to a weak coupling among all
toggles (d = 0.1), while black solid curves correspond to a strong coupling among all toggles (d = 10).
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Figure SI-7.3

Figure SI-7.3. Examples of monotone parametric dependencies for the signaling species
levels in the (1:1)-mixed state. All explanations are as in Fig. 5.
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Figure SI-7.4

Figure SI-7.4. Examples of monotone parametric dependencies for the repressor-protein
levels in the (9:1)-mixed state (a 90% large G-subpopulation.) Green and red solid curves
correspond to stable solution branches, while all blue curves correspond to unstable solution branches.
Red filled circles correspond to an LP-bifurcation point. In panels (A) and (B), projections of stable and
unstable solution branches coincide and, so, only the stable solution branches are shown.

The monotone parametric dependencies for a (9:1)-mixed state corresponding to a spontaneous
synchronization error are illustrated in Fig. SI-7.4 for a large G-subpopulation comprising 90%
of all cells, and in Fig. SI-7.5 for a small R-subpopulation comprising 10% of all cells in the
given (9:1)-mixed state.

We observe that LP-bifurcation points are present in both panels (A) and (B), and are absent
from both panels (C) and (D) in Fig. SI-7.4 and Fig. SI-7.5. To explain this observation we
have to recall the difference between parameters δg and δr. As discussed earlier, a decrease in
the values of δg can be interpreted in terms of the improved communication between the toggles
within the large subpopulation, while a decrease in the values of δr can be interpreted in terms
of the improved communication between the toggles within the small subpopulation.
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Figure SI-7.5

Figure SI-7.5. Examples of monotone parametric dependencies for the repressor-protein
levels in the (9:1)-mixed state (a 10% small R-subpopulation.) Green and red solid curves
correspond to stable solution branches, while all blue curves correspond to unstable solution branches.
In panel (D), projections of stable and unstable solution branches coincide. Red filled circles in panels
(A) and (B) correspond to an LP-bifurcation point.
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Figure SI-7.6

Figure SI-7.6. Homogeneous populations of S and A toggles. Dependencies of G-homogeneous
populations on the values of the parameter d are shown. Top panels (A) and (B) correspond to a
G-homogeneous population of S toggles. Panel (A) presents (dimensionless) levels of the activated LacI,
while levels of the repressed TetR are of order of magnitude about 10−3 and are not shown. Panel (B)
presents levels of C14-HSL. The green curve corresponds to the intracellular levels, while the black plot
corresponds to extracellular levels of C14-HSL, respectively. Panels (C) and (E) present levels of the
activated LacI and C4-HSL obtained for the A toggle settled at the G-state (LacI > TetR). Panels (D)
and (F) present levels of the activated TetR and C4-HSL obtained for the A toggle settled at the
R-state (TetR > LacI).
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We observe from Fig. SI-7.6 that the intracellular and extracellular levels of the QS signaling
molecule C14-HSL become asymptotically indistinguishable from one another as d→∞. The
asymptotic behavior of the S toggle for large values of d can be analytically understood after
introducing a small parameter ε = d−1 into the S-model (1) which becomes a singularly-perturbed
problem [61]. Setting formally ε = 0 in the singularly-perturbed problem as required by the
theory of singular perturbations [61], the differential equations (SI-8.1c) and (SI-8.1d) can be
reduced to elementary algebraic equations g = ge and r = re, respectively.
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Figure SI-7.7

Figure SI-7.7. A (1:1)-mixed population of A toggles. Green and red color coded curves in
panels (A) and (B) correspond to the intracellular concentrations of LacI and TetR, respectively, while a
black color-coded curve in panel (C) corresponds to the extracellular concentration of C4-HSL. In panel
(C), the green color-coded curve corresponds to the concentration of C4-HSL within the
G-subpopulation, that is, LacI > TetR as in panel (A), while the red color-coded curve corresponds to
the R-subpopulation, that is, TetR > LacI as in panel (B).
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Figure SI-7.8

Figure SI-7.8. A (9:1)- and (1:9)-mixed population of A toggles. Here, all notations and
color-coding schemes are as in Fig. 9. Panels (A) and (B) correspond to the (9:1)-mixed population,
within which the transcription signature LacI � TetR dominates in proportion 9:1 (i.e., with 90% of
green cells and 10% of red cells), while panels (C) and (D) correspond to the (1:9)-mixed population,
within which the opposite transcription signature TetR � LacI as well dominates in proportion 9:1 (i.e.,
with 90% of red cells and 10% of green cells.)
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Figure SI-7.9

Figure SI-7.9. Lack of any self-correction capability for spontaneous errors by A toggles.
The left panels correspond to the reference (10:0)-state (G-state), while the right panels correspond to
the reference (0:10)-state (R-state). The initial conditions in the left panels correspond to nine “green”
cells and one “red” cell. The initial conditions in the right panels correspond to one “green” cell and
nine “red” cells.
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SI-8 Modification of the S and A Models to Describe Sequestra-
tion of AAA+ protease ClpXP

To probe competition and sequestration effects for AAA+ proteases ClpXP in the context of
our monotone theory-based modeling studies described in the main text, we have modified S
and A models by adding the corresponding Michaelis-Menten type degradation [37]. Because all
scaling procedures used for this case are similar to the scaling procedures described in detail
earlier, we omit laborious technical details.

SI-8.1 Modification of the S Model

A dimensionless modified Sm model is

dxi
dt

= γx +
a1

1 + ynY
i

+
a3 g

nG
i

1 + gnG
i

− δ xi −
kssrA xi
1 + Zi

, (SI-8.1a)

dyi
dt

= γy +
a2

1 + xnX
i

+
a4r

nR
i

1 + rnR
i

− δ yi −
kssrA yi
1 + Zi

, (SI-8.1b)

dgi
dt

= γg +
a5

1 + ynY
i

+ d
(
ge − gi

)
− δg gi, (SI-8.1c)

dri
dt

= γr +
a6

1 + xnX
i

+ d
(
re − ri

)
− δr ri, i = 1, . . . , N, (SI-8.1d)

dge
dt

=
ρ

N

N∑
i=1

d
(
gi − ge

)
− δe ge, 0 ≤ ρ ≤ 1, (SI-8.1e)

dre
dt

=
ρ

N

N∑
i=1

d
(
ri − re

)
− δe re. (SI-8.1f)

Here, all state variables are as defined for the original (non-modified) S model (1), see the main
text. New parameters in (SI-8.1b) and (SI-8.1b) include: kssrA, a maximal degradation rate for
ssrA tagged proteins, δ is an intracellular dilution rate due to cell growth. A new term Zi used
in (SI-8.1b) and (SI-8.1b) is

Zi = xi/KMX + yi/KMY . (SI-8.2)

(SI-8.2) assumes that the degradation kinetics of all ssrA-tagged proteins via ClpXP is the same
and, hence, can be described with the same Michaelis-Menten equation [37]. Parameters, KMY

and KMY , used in (SI-8.2) are scaled Michaelis constants. All other parameters in (SI-8.1a) -
(SI-8.1f) are as defined for the original (non-modified) S model (1).
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SI-8.2 Modification of the A Model

A dimensionless modified Am model is

dxi
dt

= γx +
a1

1 + ynY
i

+
a4 r

nR
i

1 + rnR
i

− δ xi −
kssrA xi
1 + Zi

, (SI-8.3a)

dyi
dt

= γy +
a2

1 + xnX
i

− δ yi −
kssrA yi
1 + Zi

, (SI-8.3b)

dri
dt

= γr +
a6

1 + xnX
i

+ d
(
re − ri

)
− δr ri, i = 1, . . . , N, (SI-8.3c)

dre
dt

=
ρ

N

N∑
i=1

d
(
ri − re

)
− δe re. (SI-8.3d)

Here, all state variables and parameters are as defined for the Sm model (SI-8.1).

SI-8.3 Reference parameter values

For the sake of simplicity and as an important extreme situation, we assume that the reference
number of AAA+ protease ClpXP molecules per cell is of the same order of magnitude as the
reference number of ssrA-tagged protein molecules, i.e., LacI and TetR (SI-2.2 Nondimension-
alization). In other words, we assume that the number of AAA+ protease ClpXP molecules
per cell is about 40 monomers per cell, that is, ssrA-tagged LacI and TetR should compete for
AAA+ protease ClpXP. A set of all dimensionless parameter values used in the modified models
can be found in Table SI-8.1, and is computed based on the data obtained from [37].

Table SI-8.1. Dimensionless parameter values used in the computational modeling.

Name Description of dimensionless parameters Value

kssrA a maximal degradation rate for ssrA tagged proteins 10.0
KMX a parameter reciprocal to the non-monotonicity degree for LacI 33.0
KMY a parameter reciprocal to the non-monotonicity degree for TetR 33.0
δ an intracellular dilution rate due to cell growth 0.7
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32. Semsey S, Jauffred L, Csiszovszki Z, Erdőssy J, Stéger V, Hansen S, et al. The effect of
LacI autoregulation on the performance of the lactose utilization system in Escherichia
coli. Nucleic acids research. 2013;p. gkt351.

PLOS 38/39



33. Ramos JL, Mart́ınez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X,
et al. The TetR family of transcriptional repressors. Microbiology and Molecular Biology
Reviews. 2005;69(2):326–356.

34. Markiewicz P, Kleina LG, Cruz C, Ehret S, Miller JH. Genetic studies of the lac repressor.
XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-
essential residues, as well as” spacers” which do not require a specific sequence. Journal
of molecular biology. 1994;240(5):421–433.

35. Daniel R, Rubens JR, Sarpeshkar R, Lu TK. Synthetic analog computation in living cells.
Nature. 2013;497(7451):619–623.

36. Carbonell-Ballestero M, Duran-Nebreda S, Montañez R, Solé R, Maćıa J, Rodŕıguez-Caso
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